Skip to main content

6 Period Moving Average


Media móvil Este ejemplo le enseña cómo calcular el promedio móvil de una serie de tiempo en Excel. Una gran ventaja se utiliza para suavizar las irregularidades (picos y valles) para reconocer fácilmente las tendencias. 1. En primer lugar, echemos un vistazo a nuestra serie de tiempo. 2. En la ficha Datos, haga clic en Análisis de datos. Nota: no puede encontrar el botón Análisis de datos Haga clic aquí para cargar el complemento Herramientas de análisis. 3. Seleccione Media móvil y haga clic en Aceptar. 4. Haga clic en el cuadro Rango de entrada y seleccione el rango B2: M2. 5. Haga clic en el cuadro Interval y escriba 6. 6. Haga clic en el cuadro Rango de salida y seleccione la celda B3. 8. Trazar un gráfico de estos valores. Explicación: dado que establecemos el intervalo en 6, el promedio móvil es el promedio de los 5 puntos de datos anteriores y el punto de datos actual. Como resultado, los picos y valles se suavizan. El gráfico muestra una tendencia creciente. Excel no puede calcular el promedio móvil para los primeros 5 puntos de datos porque no hay suficientes puntos de datos anteriores. 9. Repita los pasos 2 a 8 para el intervalo 2 y el intervalo 4. Conclusión: Cuanto mayor sea el intervalo, más se suavizarán los picos y los valles. Cuanto más pequeño es el intervalo, más cerca están las medias móviles de los puntos de datos reales. ¿Te gusta este sitio web gratuito? Comparte esta página en GoogleMoving Media Forecasting Introduction. Como usted podría adivinar, estamos estudiando algunos de los enfoques más primitivos para la predicción. Pero espero que estas sean al menos una introducción valiosa a algunos de los problemas de computación relacionados con la implementación de pronósticos en hojas de cálculo. En este sentido, continuaremos comenzando desde el principio y comenzando a trabajar con las previsiones de Media móvil. Pronósticos de media móvil. Todo el mundo está familiarizado con los pronósticos de promedio móvil, independientemente de si creen que son. Todos los estudiantes universitarios lo hacen todo el tiempo. Piense en los resultados de su examen en un curso en el que va a tener cuatro pruebas durante el semestre. Supongamos que tienes un 85 en tu primera prueba. ¿Qué predecirías para tu segundo puntaje de prueba? ¿Qué crees que tu maestro predijo para tu siguiente puntaje de prueba? ¿Qué crees que tus amigos podrían predecir para tu siguiente puntaje de prueba? ¿Qué crees que tus padres podrían predecir para tu próximo puntaje de prueba? Todo el blabbing que usted puede hacer a sus amigos y padres, él y su profesor son muy probables esperar que usted consiga algo en el área de los 85 que usted acaba de conseguir. Bueno, ahora vamos a suponer que a pesar de su autopromoción a sus amigos, usted se sobreestimar y la figura que puede estudiar menos para la segunda prueba y por lo que se obtiene un 73. Ahora lo que todos los interesados ​​y despreocupados va a Anticipar que usted conseguirá en su tercer examen Hay dos acercamientos muy probables para que desarrollen una estimación sin importar si lo compartirán con usted. Pueden decir a sí mismos: "Este tipo siempre está soplando el humo de su inteligencia. Hes va a conseguir otro 73 si hes suerte. Tal vez los padres tratarán de ser más solidarios y decir: "Bueno, hasta ahora has conseguido un 85 y un 73, por lo que tal vez debería figura en obtener sobre un (85 73) / 2 79. No sé, tal vez si usted hizo menos Fiesta y werent meneando la comadreja en todo el lugar y si usted comenzó a hacer mucho más estudiando que podría obtener una puntuación más alta. quot Ambos de estos estimados son en realidad las previsiones de promedio móvil. El primero es usar sólo su puntaje más reciente para pronosticar su rendimiento futuro. Esto se denomina pronóstico de media móvil utilizando un período de datos. El segundo es también un pronóstico de media móvil, pero utilizando dos períodos de datos. Vamos a asumir que todas estas personas estallando en su gran mente tienen tipo de molesto y usted decide hacer bien en la tercera prueba por sus propias razones y poner una puntuación más alta en frente de sus quotalliesquot. Usted toma la prueba y su puntuación es en realidad un 89 Todos, incluido usted mismo, está impresionado. Así que ahora tiene la prueba final del semestre que viene y como de costumbre se siente la necesidad de incitar a todos a hacer sus predicciones acerca de cómo youll hacer en la última prueba. Bueno, espero que veas el patrón. Ahora, espero que puedas ver el patrón. ¿Cuál crees que es el silbido más preciso mientras trabajamos? Ahora volvemos a nuestra nueva compañía de limpieza iniciada por su hermana separada llamada Whistle While We Work. Tiene algunos datos de ventas anteriores representados en la siguiente sección de una hoja de cálculo. Primero presentamos los datos para un pronóstico de media móvil de tres periodos. La entrada para la celda C6 debe ser Ahora puede copiar esta fórmula de celda abajo a las otras celdas C7 a C11. Observe cómo el promedio se mueve sobre los datos históricos más recientes, pero utiliza exactamente los tres períodos más recientes disponibles para cada predicción. También debe notar que realmente no necesitamos hacer las predicciones para los períodos pasados ​​con el fin de desarrollar nuestra predicción más reciente. Esto es definitivamente diferente del modelo de suavizado exponencial. He incluido las predicciones anteriores porque las usaremos en la siguiente página web para medir la validez de la predicción. Ahora quiero presentar los resultados análogos para un pronóstico de media móvil de dos periodos. La entrada para la celda C5 debe ser Ahora puede copiar esta fórmula de celda abajo a las otras celdas C6 a C11. Observe cómo ahora sólo se usan las dos más recientes piezas de datos históricos para cada predicción. Nuevamente he incluido las predicciones anteriores para fines ilustrativos y para uso posterior en la validación de pronósticos. Algunas otras cosas que son importantes de notar. Para una predicción de promedio móvil del período m sólo se usan los m valores de datos más recientes para hacer la predicción. Nada más es necesario. Para una predicción media móvil del período m, al hacer predicciones quotpast, observe que la primera predicción ocurre en el período m 1. Ambas cuestiones serán muy significativas cuando desarrollemos nuestro código. Desarrollo de la función de media móvil. Ahora necesitamos desarrollar el código para el pronóstico del promedio móvil que se puede usar con más flexibilidad. El código sigue. Observe que las entradas son para el número de períodos que desea utilizar en el pronóstico y la matriz de valores históricos. Puede guardarlo en cualquier libro que desee. Función MovingAverage (Histórica, NumberOfPeriods) Como única Declaración e inicialización de variables Dim Item como variante Dim Contador como Entero Dim Acumulación como único Dim HistoricalSize As Entero Inicialización de variables Counter 1 Acumulación 0 Determinación del tamaño del historial HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Acumulación del número apropiado de los valores observados anteriormente más recientes Acumulación Acumulación Histórica (HistoricalSize - NumberOfPeriods Counter) MovingAverage Acumulación / NumberOfPeriods El código se explicará en la clase. Desea posicionar la función en la hoja de cálculo para que el resultado del cálculo aparezca en el que debería gustar lo siguiente. En la práctica, el promedio móvil proporcionará una buena estimación de la media de la serie temporal si la media es constante o cambia lentamente. En el caso de una media constante, el mayor valor de m dará las mejores estimaciones de la media subyacente. Un período de observación más largo promediará los efectos de la variabilidad. El propósito de proporcionar un m más pequeño es permitir que el pronóstico responda a un cambio en el proceso subyacente. Para ilustrar, proponemos un conjunto de datos que incorpora cambios en la media subyacente de la serie temporal. La figura muestra las series temporales utilizadas para la ilustración junto con la demanda media a partir de la cual se generó la serie. La media comienza como una constante en 10. Comenzando en el tiempo 21, aumenta en una unidad en cada período hasta que alcanza el valor de 20 en el tiempo 30. Entonces se vuelve constante otra vez. Los datos se simulan sumando a la media un ruido aleatorio de una distribución Normal con media cero y desviación estándar 3. Los resultados de la simulación se redondean al entero más próximo. La tabla muestra las observaciones simuladas utilizadas para el ejemplo. Cuando usamos la tabla, debemos recordar que en cualquier momento dado, sólo se conocen los datos pasados. Las estimaciones del parámetro del modelo, para tres valores diferentes de m se muestran junto con la media de las series temporales de la siguiente figura. La figura muestra la media móvil de la estimación de la media en cada momento y no la previsión. Los pronósticos cambiarían las curvas de media móvil a la derecha por períodos. Una conclusión es inmediatamente aparente de la figura. Para las tres estimaciones, la media móvil se queda por detrás de la tendencia lineal, con el retardo aumentando con m. El retraso es la distancia entre el modelo y la estimación en la dimensión temporal. Debido al desfase, el promedio móvil subestima las observaciones a medida que la media aumenta. El sesgo del estimador es la diferencia en un tiempo específico en el valor medio del modelo y el valor medio predicho por el promedio móvil. El sesgo cuando la media está aumentando es negativo. Para una media decreciente, el sesgo es positivo. El retraso en el tiempo y el sesgo introducido en la estimación son funciones de m. Cuanto mayor sea el valor de m. Mayor es la magnitud del retraso y sesgo. Para una serie cada vez mayor con tendencia a. Los valores de retraso y sesgo del estimador de la media se dan en las ecuaciones siguientes. Las curvas de ejemplo no coinciden con estas ecuaciones porque el modelo de ejemplo no está aumentando continuamente, sino que comienza como una constante, cambia a una tendencia y luego se vuelve constante otra vez. También las curvas de ejemplo se ven afectadas por el ruido. El pronóstico de media móvil de los períodos en el futuro se representa desplazando las curvas hacia la derecha. El desfase y sesgo aumentan proporcionalmente. Las ecuaciones a continuación indican el retraso y sesgo de los períodos de previsión en el futuro en comparación con los parámetros del modelo. Nuevamente, estas fórmulas son para una serie de tiempo con una tendencia lineal constante. No debemos sorprendernos con este resultado. El estimador del promedio móvil se basa en el supuesto de una media constante, y el ejemplo tiene una tendencia lineal en la media durante una parte del período de estudio. Dado que las series de tiempo real rara vez obedecerán exactamente las suposiciones de cualquier modelo, debemos estar preparados para tales resultados. También podemos concluir de la figura que la variabilidad del ruido tiene el efecto más grande para m más pequeño. La estimación es mucho más volátil para el promedio móvil de 5 que el promedio móvil de 20. Tenemos los deseos en conflicto de aumentar m para reducir el efecto de la variabilidad debido al ruido y disminuir m para hacer que el pronóstico más sensible a los cambios En promedio El error es la diferencia entre los datos reales y el valor previsto. Si la serie temporal es verdaderamente un valor constante, el valor esperado del error es cero y la varianza del error está compuesta por un término que es una función de y un segundo término que es la varianza del ruido. El primer término es la varianza de la media estimada con una muestra de m observaciones, suponiendo que los datos provienen de una población con una media constante. Este término se minimiza haciendo m tan grande como sea posible. Un m grande hace que el pronóstico no responda a un cambio en la serie cronológica subyacente. Para hacer que el pronóstico responda a los cambios, queremos que m sea lo más pequeño posible (1), pero esto aumenta la varianza del error. La predicción práctica requiere un valor intermedio. Previsión con Excel El complemento de previsión implementa las fórmulas de promedio móvil. El siguiente ejemplo muestra el análisis proporcionado por el complemento para los datos de muestra en la columna B. Las primeras 10 observaciones se indexan -9 a 0. En comparación con la tabla anterior, los índices de período se desplazan en -10. Las primeras diez observaciones proporcionan los valores iniciales para la estimación y se utilizan para calcular la media móvil para el período 0. La columna MA (10) (C) muestra las medias móviles calculadas. El parámetro de la media móvil m está en la celda C3. La columna Fore (1) (D) muestra un pronóstico para un período en el futuro. El intervalo de pronóstico está en la celda D3. Cuando el intervalo de pronóstico se cambia a un número mayor, los números de la columna Fore se desplazan hacia abajo. La columna Err (1) (E) muestra la diferencia entre la observación y el pronóstico. Por ejemplo, la observación en el tiempo 1 es 6. El valor pronosticado a partir de la media móvil en el tiempo 0 es 11.1. El error entonces es -5.1. La desviación estándar y la media de la desviación media (MAD) se calculan en las celdas E6 y E7, respectivamente.6.2 Promedio móvil 40 elecsales, orden 5 41 En la segunda columna de esta tabla, se muestra una media móvil de orden 5, proporcionando una estimación de El ciclo de tendencia. El primer valor en esta columna es el promedio de las cinco primeras observaciones (1989-1993), el segundo valor en la columna 5-MA es el promedio de los valores 1990-1994 y así sucesivamente. Cada valor en la columna 5-MA es el promedio de las observaciones en el período de cinco años centrado en el año correspondiente. No hay valores para los dos primeros años o los últimos dos años porque no tenemos dos observaciones a cada lado. En la fórmula anterior, la columna 5-MA contiene los valores de hat con k2. Para ver cómo se ve la estimación de tendencia-ciclo, lo trazamos junto con los datos originales en la Figura 6.7. Parcela 40 elecsales, principal quotResidential ventas de electricidad, ylab quotGWhquot. Observe cómo la tendencia (en rojo) es más suave que los datos originales y captura el movimiento principal de la serie temporal sin todas las fluctuaciones menores. El método del promedio móvil no permite estimaciones de T en las que t está cerca de los extremos de la serie, por lo tanto la línea roja no se extiende a los bordes de la gráfica en cualquier lado. Posteriormente utilizaremos métodos más sofisticados de estimación de tendencia-ciclo que permiten estimaciones cerca de los puntos finales. El orden de la media móvil determina la suavidad de la estimación de tendencia-ciclo. En general, una orden más grande significa una curva más lisa. El siguiente gráfico muestra el efecto de cambiar el orden de la media móvil para los datos de ventas de electricidad residencial. Esto es así que son simétricos: en una media móvil de orden m2k1, hay k observaciones anteriores, k observaciones posteriores y la observación media Que se promedian. Pero si m era igual, ya no sería simétrico. Promedios móviles de promedios móviles Es posible aplicar una media móvil a una media móvil. Una de las razones para hacer esto es hacer una media móvil de orden uniforme simétrica. Por ejemplo, podríamos tomar una media móvil de orden 4, y luego aplicar otra media móvil de orden 2 a los resultados. En la Tabla 6.2, esto se ha hecho para los primeros años de los datos trimestrales australianos sobre la producción de cerveza. Beer2 lt - window 40 ausbeer, comienzo 1992 41 ma4 ltm 40 beer2, order 4. center FALSO 41 ma2x4 ltm 40 cerveza2, orden 4. center TRUE 41 La notación 2times4-MA en la última columna significa un 4-MA Seguido por un 2-MA. Los valores de la última columna se obtienen tomando una media móvil de orden 2 de los valores de la columna anterior. Por ejemplo, los dos primeros valores en la columna 4-MA son 451,2 (443410420532) / 4 y 448,8 (410420532433) / 4. El primer valor en la columna 2times4-MA es el promedio de estos dos: 450.0 (451.2448.8) / 2. Cuando un 2-MA sigue una media móvil de orden par (como 4), se llama una media móvil centrada de orden 4. Esto es porque los resultados son ahora simétricos. Para ver que este es el caso, podemos escribir el 2times4-MA de la siguiente manera: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big frac fray frac14y frac14y frac14y frac18y. Final Es ahora un promedio ponderado de observaciones, pero es simétrico. También son posibles otras combinaciones de promedios móviles. Por ejemplo, a menudo se utiliza una MA 3 x 3 y consiste en una media móvil de orden 3 seguida por otra media móvil de orden 3. En general, un orden par MA debe ir seguido de un orden par MA para hacerlo simétrico. Similarmente, un orden impar MA debe ser seguido por un orden impar MA. Estimación del ciclo de tendencias con datos estacionales El uso más común de promedios móviles centrados consiste en estimar el ciclo de tendencias a partir de datos estacionales. Considere el caso 2 x 4-MA: fractura de sombrero frac14y frac14y frac14y frac18y. Cuando se aplica a los datos trimestrales, cada trimestre del año se le da el mismo peso como el primer y último términos se aplican al mismo trimestre en años consecutivos. En consecuencia, se promediará la variación estacional y los valores resultantes del sombrero t tendrán poca o ninguna variación estacional restante. Se obtendría un efecto similar usando una 2-8 MA o una 2-12 MA. En general, una m-MA de 2 veces es equivalente a una media móvil ponderada de orden m1 con todas las observaciones tomando peso 1 / m excepto para el primer y último términos que toman pesos 1 / (2m). Por lo tanto, si el período estacional es uniforme y de orden m, utilice una m-MA de 2 veces para estimar el ciclo de tendencia. Si el período estacional es impar y de orden m, use un m-MA para estimar el ciclo de tendencias. En particular, se puede usar un 2-12 MA para estimar el ciclo de tendencias de los datos mensuales y un 7-MA se puede utilizar para estimar el ciclo de tendencias de los datos diarios. Otras opciones para el orden de la MA por lo general resultarán en estimaciones de tendencia-ciclo que están contaminadas por la estacionalidad en los datos. Ejemplo 6.2 Fabricación de equipos eléctricos La Figura 6.9 muestra una aplicación de 2 x 12 mA aplicada al índice de pedidos de equipos eléctricos. Obsérvese que la línea lisa no muestra estacionalidad, es casi la misma que la tendencia-ciclo que se muestra en la Figura 6.2 que se estimó usando un método mucho más sofisticado que los promedios móviles. Cualquier otra opción para el orden de la media móvil (excepto 24, 36, etc.) habría resultado en una línea suave que muestra algunas fluctuaciones estacionales. Plot 40 elecequip, ylab quotNuevo índice de órdenes. Col quotgrayquot, main Quot 41, 40 ma 40 elecequip, order 12 41. col quotredquot 41 Promedios móviles ponderados Las combinaciones de promedios móviles resultan en promedios móviles ponderados. Por ejemplo, el 2x4-MA discutido anteriormente es equivalente a un 5-MA ponderado con pesos dados por frac, frac, frac, frac, frac. En general, una m-MA ponderada se puede escribir como hat t sum k aj y, donde k (m-1) / 2 y los pesos están dados por a, dots, ak. Es importante que los pesos se suman a uno y que sean simétricos de modo que aj a. El m-MA simple es un caso especial donde todos los pesos son iguales a 1 / m. Una ventaja importante de las medias móviles ponderadas es que producen una estimación más suave del ciclo de tendencias. En lugar de las observaciones que entran y salen del cálculo a todo su peso, sus pesos aumentan lentamente y luego disminuyen lentamente, resultando en una curva más lisa. Algunos conjuntos específicos de pesos son ampliamente utilizados. Algunos de ellos se dan en la Tabla 6. 3. Métodos de los Promedios Móviles Los comentarios están apagados Supongamos que hay períodos de tiempo denotados por y los valores correspondientes de la variable son. En primer lugar tenemos que decidir el período de las medias móviles. Para series cortas de tiempo, usamos el período de 3 o 4 valores. Para series largas de tiempo, el período puede ser 7, 10 o más. Para las series de tiempo trimestrales, siempre calculamos promedios tomando 4 cuartos a la vez. En series mensuales, se calculan los promedios móviles 12-mensuales. Supongamos que la serie temporal dada es en años y hemos decidido calcular una media móvil de 3 años. Los promedios móviles denotados por se calculan como a continuación:

Comments

Popular posts from this blog

Adil Altaеџ Forex 5n

Adil altaРμСџ forex 5n Adil altaРμСџ forex 5n Hay siete tipos de gráficos: Diario, Semanal. Ejemplo de catalizador o ganadores nunca entrará 92013. Aquí te traemos adil altaРμСџ forex 5n top rated www forex5minutes com que en nuestra opinión son los mejores que hay. El viernes 13-14 último vi que estaba arriba, en beneficio de 36, pares de divisas. Opciones de acciones de incentivos calificadas Planes de opciones de acciones con incentivos calificados: Los planes de opciones de acciones con incentivos están "calificados" si cumplen con los requisitos de la Sección 421 del Código de Rentas Internas. Pero afortunadamente no es tan difícil calcular esta tasa. De las opciones binarias robo de comercio, los comerciantes de móviles aussie que van a. A corto plazo. Al mirar la palabra promover puede fácilmente concluir que en esto seremos pagados por promover algo. Veamos lo que Nadex tiene para ofrecerle. El inversionista obtendrá noticias diarias del mercado y del día. Historia de...

Forex Binary Options Trading

Protección Forex sin detenerse Utilizando un tradicional stop-loss para limitar el riesgo todavía implica el riesgo de deslizamiento. Los mercados de divisas son rápidos, por lo que puede obtener lleno lejos del precio que quería, con una pérdida no planificada, incluso devastador. Con las opciones binarias de la divisa y las extensiones, su pérdida máxima posible se fija antes de que usted incorpore el comercio. Usted no puede perder más si un comercio va en contra de usted. De hecho, Nadex no emite llamadas de margen. Todos los oficios están totalmente garantizados. La mayoría de los comerciantes saben la frustración de conseguir parado hacia fuera, solamente para mirar el mercado mover nuevamente dentro del territorio del beneficio. Con Nadex, no te paras, nunca. Nadex le da poder de permanencia. Comercio el mercado más grande de los mundos con un equilibrio pequeño de la apertura La mayoría de los comerciantes acertados comienzan pequeños, así que pueden aprender. Mientras que la I...

30 Opciones De Stock

Carta Resolución 82-110: Incentivos Stock Options 22 de noviembre de 1982 Usted pregunta acerca del tratamiento impositivo de Massachusetts sobre las opciones de compra de acciones para empleados que para fines federales califican como Opciones de Opciones de Incentivos. El Capítulo 62, Sección 2 de las Leyes Generales de Massachusetts establece que los ingresos brutos de Massachusetts son ingresos brutos federales con ciertas modificaciones. Massachusetts determina el ingreso bruto federal según el Código de Rentas Internas, enmendado el 6 de noviembre de 1978 y vigente para el año contributivo (Código de 1978). (M. G.L., capítulo 62, s.1 (c)). El ingreso bruto de Massachusetts se divide en el ingreso tributable de la Parte A, que se grava al tipo del 10%, y el ingreso tributable de la Parte B, que se grava al tipo del 5%. El ingreso de la Parte A se compone de dividendos, ganancias de capital netas e intereses distintos a los intereses de los depósitos de ahorro en instituciones banc...